A One Dimensional Heat Equation with Mixed Boundary Conditions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

Three-Dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions

The steady three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions is investigated by using similarity solution approach. The free stream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are reduced into ordinary differential equations b...

متن کامل

∂-equation on a lunar domain with mixed boundary conditions

In this paper, making use of the method developed by Catlin, we study the L-estimate for the ∂̄-equation on a lunar manifold with the mixed boundary conditions.

متن کامل

Convergence to Steady States for a One-dimensional Viscous Hamilton-jacobi Equation with Dirichlet Boundary Conditions

The convergence to steady states of non-negative solutions u to the one-dimensional viscous Hamilton-Jacobi equation ∂tu − ∂2 xu = |∂xu|, (t, x) ∈ (0,∞)× (−1, 1) with homogeneous Dirichlet boundary conditions is investigated. For that purpose, a Liapunov functional is constructed by the approach of Zelenyak (1968). Instantaneous extinction of ∂xu on a subinterval of (−1, 1) is also shown for su...

متن کامل

A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ g(u, ū) ū = 0, with Periodic Boundary Conditions is considered; m / ∈ 1 12Z is a real parameter and the nonlinearity g(u, ū)= ∑ j,l,j+l 4 ajlu j ū , aj l = alj ∈ R, a22 = 0 is a real analytic function in a neighborhood of the origin. The KAM machinery is adapted to fit the above equation so as to construct small-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1997

ISSN: 0022-0396

DOI: 10.1006/jdeq.1997.3299